Closure Spaces in the Plane

نویسنده

  • John L. Pfaltz
چکیده

When closure operators are deened over gures in the plane, they are normally deened with respect to convex closure in the Euclidean plane. This report concentrates on discrete closure operators deened over the discrete, rectilinear plane. Basic to geometric convexity is the concept of a geodesic, or shortest path. Such geodesics can be regarded as the closure of two points. But, given the usual deenition of geodesic in the discrete plane, they are not unique. And therefore convex closure is not uniquely generated. We ooer a diierent deenition of geodesic that is uniquely generated, although not symmetric. It results in a diierent geometry; for example, two unbounded lines may be parallel to a third, yet still themselves intersect. It is a discrete geometry that appears to be relevant to VLSI design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categories isomorphic to the category of $L$-fuzzy closure system spaces

In this paper, new definitions of $L$-fuzzy closure operator, $L$-fuzzy interior operator, $L$-fuzzy remote neighborhood system, $L$-fuzzy neighborhood system and $L$-fuzzy quasi-coincident neighborhood system are proposed. It is proved that the category of $L$-fuzzy closure spaces, the category of $L$-fuzzy interior spaces, the category of $L$-fuzzy remote neighborhood spaces, the category of ...

متن کامل

Linear v{C}ech closure spaces

In this paper, we introduce the concept of linear v{C}ech closure spaces and establish the properties of open sets in linear v{C}ech closure spaces (Lv{C}CS). Here, we observe that the concept of linearity is preserved by semi-open sets, g-semi open sets, $gamma$-open sets, sgc-dense sets and compact sets in Lv{C}CS. We also discuss the concept of relative v{C}ech closure operator, meet and pro...

متن کامل

ON (L;M)-FUZZY CLOSURE SPACES

The aim of this paper is to introduce $(L,M)$-fuzzy closurestructure where $L$ and $M$ are strictly two-sided, commutativequantales. Firstly, we define $(L,M)$-fuzzy closure spaces and getsome relations between $(L,M)$-double fuzzy topological spaces and$(L,M)$-fuzzy closure spaces. Then, we introduce initial$(L,M)$-fuzzy closure structures and we prove that the category$(L,M)$-{bf FC} of $(L,M...

متن کامل

A special subspace of weighted spaces of holomorphic functions on the upper half plane

In this paper, we intend to define and study concepts of weight and weighted spaces of holomorphic (analytic) functions on the upper half plane. We study two special classes of these spaces of holomorphic functions on the upper half plane. Firstly, we prove these spaces of holomorphic functions on the upper half plane endowed with weighted norm supremum are Banach spaces. Then, we investigate t...

متن کامل

A remark on boundedness of composition operators between weighted spaces of holomorphic functions on the upper half-plane

In this paper, we obtain a sucient condition for boundedness of composition operators betweenweighted spaces of holomorphic functions on the upper half-plane whenever our weights are standardanalytic weights, but they don't necessarily satisfy any growth condition.

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999